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ABSTRACT

Network protocols such as Ethernet and TCP/IP were not designed

to ensure the security and privacy of users. To protect users’ pri-

vacy, anonymity networks such as Tor have been proposed to hide

both identities and communication contents for Internet traffic. How-

ever, such solutions cannot protect enterprise network traffic that

does not transit the Internet. In this paper, we present the design,

implementation, and evaluation of Packet Header Randomization

(PHEAR), a privacy-enhancing system for enterprise networks that

leverages emerging Software-Defined Networking hardware and

protocols to eliminate identifiers found at the MAC, Network, and

higher layers of the network stack. PHEAR also encrypts all packet

data beyond the Network layer. We evaluate the security of PH-

EAR against a variety of known and novel attacks and conduct

whole-network experiments that show the prototype deployment

provides sufficient performance for common applications such as

web browsing and file sharing.

1. INTRODUCTION
The essential network protocols that have enabled the success

of the Internet were designed primarily with efficiency and perfor-

mance in mind, not the security or privacy of users. Consequently,

implicit and explicit identifiers can be found at all layers of the net-

work stack and, in some cases, can be used to uniquely identify and

track user activity. Even in cases where users trust their network op-

erators, several recent high-profile anecdotes have shown that mali-

cious third-parties can infiltrate network infrastructure (e.g., routers

or switches) for a variety of nefarious purposes including user mon-

itoring, intellectual property theft, or network reconnaissance that

can lead to secondary attacks within the network [8–10, 21, 24].

Removal or obfuscation of these identifiers while not overly dis-

rupting normal network operation has been the primary focus of

low-latency anonymity networks (most notably Tor [15]). The ma-

jority of these designs have a decentralized architecture that anony-

mizes communications by routing traffic through several geograph-

ically and topologically diverse intermediate hops, in order to to

conceal the source and destination of the traffic. Such Internet-

scale solutions, however, are not compatible with operating envi-

ronments where internal network traffic may not transit the public

Internet (such as an enterprise network). This paper proposes a sys-

tem that enables anonymous communication within such networks

via online elimination of all network identifiers that can be used to

track users and restrict privacy.

Our Solution. We present the design, implementation, and evalu-

ation of Packet Header Randomization (or PHEAR), a system that

dynamically and transparently removes network identifiers such as
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persistent MAC addresses and IP addresses from packet headers,

while still correctly routing network traffic. Our approach leverages

emerging Software-Defined Networking (SDN) hardware and pro-

tocols that enable a fully programmatic interface to packet-forwarding

within a network of SDN-enabled switches. PHEAR itself con-

sists of end-host proxies that transparently replace packet iden-

tifiers with constant values or short-lived pseudonyms, a trusted

SDN controller and management server that computes and installs

pseudonym-based (as opposed to, e.g.,, IP-based) routes between

hosts, and an infrastructure of untrusted SDN-capable switches—

which could already exist at a target PHEAR deployment site—that

forward identifier-free packets. Beyond hiding identifiers found in

Layer 2 and 3 packet headers, PHEAR builds on existing stan-

dards such as IPsec for ensuring payload confidentiality and in-

tegrity and is compatible with recently proposed traffic analysis de-

fenses [17, 35].

Evaluation. We critically evaluate the security and privacy pro-

vided by PHEAR with regard to a variety of known and novel at-

tacks. We also conduct a whole-network performance evaluation

of our prototype in an SDN network emulation environment with

realistic user and traffic models. Our performance results indicate

that PHEAR offers low-latency (time to first byte typically less than

500ms) that is sufficient for real-time interactive applications such

as web browsing and high throughput (about 80% of the nominal

throughput) to support bulk file-sharing applications.

Contributions. This paper contributes the following:

• First, we design PHEAR, an identifier-free system that dy-

namically eliminates identifying information from the MAC

and Network layers through the use of emerging Software-

Defined Networking protocols and hardware.

• Second, we implement a PHEAR prototype and critically

evaluate its security against a wide variety of attacks.

• Third, we deploy our PHEAR prototype in a realistic whole-

network emulation testbed. Our experiments show that the

system’s performance is sufficient to support typical applica-

tions including web browsing and file sharing.

Roadmap. The remainder of this paper is organized as follows. In

§2, we motivate this work by summarizing the types of informa-

tion leakage that can occur at various layers of the network stack;

we also motivate our solution with an overview of existing SDN

technologies. §3 presents the design, architecture, and implemen-

tation of PHEAR. §4 evaluates the performance and security of the

system. Open questions related to PHEAR are discussed in §5 and

this work is compared with prior work in §6. Finally, concluding

remarks are given and future work is discussed in §7.

2. BACKGROUND
Since the core networking protocols that power the Internet were

not developed with the security and privacy of users in mind, there

are many opportunities for on-path network eavesdroppers to learn



information about communicating parties through the normal op-

eration of networking protocols. However, with the emergence of

new Software-Defined Networking (SDN) switches, there is a new

tool suite available to system developers to improve the security

and privacy of users without requiring a clean-slate re-design of

the Internet’s fundamental protocols.

In this section, we briefly describe the many forms of informa-

tion leakage that can occur at all layers of the network stack. We

also provide an overview of SDN, which is essential in our ap-

proach to eliminating the network identifiers.

2.1 Identifiers and Information Leaks
To enable the efficient transmission of data between devices on

a network, a variety of network identifiers are commonly used to

refer to unique hosts. While many of these identifiers are explicit,

such as a physical device’s MAC address or a long-lived static IP

address, there are several types of implicit identifiers that can reveal

information about a host on a network. We briefly describe several

notable examples across multiple layers of the network stack.

Link-layer Identifiers. The data link layer is responsible for trans-

mitting frames between hosts on the same 802 local area network

(LAN). The MAC address is a six-byte value used to explicitly

identify physical devices on an IEEE 802 network (such as Eth-

ernet or Wireless Ethernet networks, for example). This address

is a globally unique identifier for the device’s network interface

controller (NIC). The higher three bytes form the Organisation-

ally Unique Identifier (OUI), which usually indicates the hardware

manufacturer of the NIC; the lower three bytes form the NIC-specific

portion. The source MAC address can be trivially observed by any

switch on the same LAN as the sender.1

Network-layer Identifiers. The network layer, which is responsi-

ble for forwarding packets between networks, is a source of many

explicit and implicit network identifiers. Examples include the fol-

lowing.

• IP Address: This identifier enables efficient routing of pack-

ets, and in some cases may be statically assigned to a host.

In such cases, the IP address uniquely identifies the host.

• IP Identifier: The IP Identifier (IPID) is used for uniquely

identifying the fragments of a datagram. While this field

does not uniquely identify any host, the precise manner in

which different operating systems generate IPID values has

been shown to leak information about a host’s platform, and

widely used network mapping tools use IPID heuristics to

fingerprint a remote host’s OS [5].

• IP Initial Time-to-Live: All IP packets contain a TTL which

is decremented at each router that the packet transits. The

initial TTL value can vary by OS implementations. For ex-

ample, Linux hosts use an IP initial TTL value of 64, while

Windows hosts typically use 128 [4]. These implementation

differences can leak information about a host’s platform.

Transport-layer Identifiers. This layer is responsible for trans-

ferring data between running programs. TCP is known to contain

several side channels that leak information about the identity of the

host, including (but not limited to):

• TCP Initial Window Size: When a new TCP connection is

established, the receiver’s initial window size can reveal the

host’s platform, as this value has been shown to vary between

Linux, Windows, and other platforms [4].

• UDP and TCP Ports: Services run on well-known destina-

tion ports by convention. For example, UDP packets des-

tined for port 53 are usually DNS and TCP packets destined

1
Our work specifically addresses information leaks in wired Ethernet networks. See

Pang et al. for a detailed analysis of information leakage in wireless LANs [41].

for ports 80 and 443 and HTTP and HTTPS, respectively.

In fact, an Internet traffic study found that destination ports

alone can be as effective as deep packet inspection for iden-

tifying the application-layer protocol of the traffic [36].

• TCP Timestamps: Unique patterns in clock skew that are

remotely observable in TCP timestamps have been used to

remotely fingerprint physical hosts [33] and find Tor hidden

services [38].

Application-layer Identifiers. There are numerous examples of

unique identifiers that can be found within application layer net-

work traffic including e-mail addresses or instant messaging/VoIP

login names. Such identifiers can be protected using security pro-

tocols such as SSL/TLS or HTTPS.

Despite the prevalence of identifiers across all layers of the net-

work stack, there is currently no comprehensive solution that re-

moves both explicit and implicit identifiers from network traffic.

We propose a system that eliminates these identifiers by leveraging

the capabilities of emerging SDN standards that enable customized

protocol behaviors.

2.2 Software-Defined Networking
Software-Defined Networking (SDN) is an emerging suite of

technologies to provide programmatic control over packet process-

ing and routing. Since its inception in 2008 [37], SDN has coa-

lesced into two distinct domains. Network Function Virtualization

(NFV) [22] is based on decoupling network-layer services (e.g.,

NAT, firewalls, caches, etc.) from the supporting hardware, permit-

ting their virtualization and its accompanying benefits (e.g., elas-

ticity and migration). This approach relies on commodity switches

supporting a software overlay network between virtualized network

devices and end-host hypervisors. NFV is well suited to the cloud

and datacenter domains, where the cost of replacing non-SDN net-

work switches is high but virtualization of end-points and infras-

tructure is already well-supported. Furthermore, use of a software

overlay necessitates packet encapsulation. The additional network

overhead is less problematic in already high-capacity networks than

in potentially bandwidth-limited enterprise environments.

In contrast to NFV, bare-metal SDN decouples the network con-

trol and data planes (rather than the network services and devices).

The OpenFlow standard [40] is the primary protocol in this do-

main. It relies on a logically centralized, software-based controller,

which communicates over a secure control plane to OpenFlow-

enabled network switches. Because all SDN-related functions are

performed purely in-network, OpenFlow does not require packet

encapsulation or virtualization of network services or end-hosts.

Instead, switches must support the OpenFlow protocol in firmware.

Commodity switches in the network can still be used for traditional

networking, but they cannot be managed by the controller.

We elected to use a bare-metal, OpenFlow-based SDN deploy-

ment in the design of PHEAR. Enterprise environments are ex-

pected to have both fewer and less-powerful switches than data-

centers, with a commensurately lower cost of converting to SDN

devices. Existing switches can be incrementally converted to Open-

Flow switches as current infrastructure ages, or in some cases up-

graded with only a firmware patch. Enterprises are also expected to

have a higher cost associated with virtualizing network end-points,

as these are spatially diverse (e.g., individual desktops) rather than

residing in a shared rack.

The OpenFlow standard [40] defines the required capabilities of

compliant switches, as well as the communications protocol for

interfacing with the controller. An illustrative example architec-

ture is shown in Figure 1. An OpenFlow switch routes network

data plane packets based on flow tables, which are ordered lists of



Figure 1: OpenFlow Architecture

rules where each rule consists of a guard, a set of actions to trigger,

and a time to expiration. The actions are activated and the packet

processed only if the packet’s header pattern-matches successfully

against the guard for that rule. If a packet matches none of the

rules in a flow table, it is forwarded to the OpenFlow controller. If

a packet matches multiple rules, the first rule encountered sequen-

tially is triggered and any remaining are ignored. Supported ac-

tions include forwarding to an egress port, rewriting header fields,

matching against another flow table, and assigning aggregation tags

to packets in order to form traffic groups. A pattern-match guard

can use either explicit field values (e.g., srcIP=192.168.1.1)

or mix in wildcards (e.g., srcIP=192.168.1.*).

Since OpenFlow is implemented in firmware and must operate

at line rate, some functionality is unavailable. There is no support

for higher-order matching of packet headers, such as regular ex-

pressions. Actions are limited to a set of operations (see [40] for

a full list) over packet headers only. No support for whole-packet

processing, cryptography, or other computationally intensive func-

tionality is present. This prevents, e.g., SDN-based onion routing

from being implementable on OpenFlow switches.

Communication between the OpenFlow switch and controller

takes place over a secure tunnel from the switch’s management port

to the machine running the controller. Switches forward to the con-

troller packets which either do not match any flow table rule or

which have an explicit action to that effect. The controller gener-

ates and/or removes flow rules in one or more switches in response.

The actual implementation and functionality of the controller is de-

termined completely by the application domain, but all controller

programs must communicate with switches only by installing flow

rules. Note that does not restrict the controller from communicat-

ing with other machines via a northbound API. Controllers can be

written in a general-purpose language (e.g., Python, Java) or one

of a number of languages designed for the purpose. These include

NOX/POX [23], Beacon [18], Frenetic [19], and Flowlog [39].

3. PHEAR
Here we present an overview of PHEAR, a system designed to

provide unlinkability of traffic source and destination at Layers 2

(MAC) and 3 (Network) of the network stack. We first identify our

assumptions and threat model, and then describe the design and

implementation of the PHEAR protocol.

3.1 Assumptions and Threat Model
The design of PHEAR is motivated by the growing incidence of

long-term, stealthy, and pervasive attacks on enterprise networks by

dedicated attackers, referred to as an Advanced Persistent Threat

(APT) [8]. Recent examples of such attacks include instances of an

APT attacker not only compromising end-hosts, but spreading into

the network infrastructure itself in order to facilitate network re-

connaissance and persistence [9]. Compromises have also been ob-

Figure 2: Packet Header Randomization Architecture

served against home and small business routers [10,21,24]. Finally,

evidence has been found in recent years of supply-chain attacks on

commercial routers, in which backdoors have been inserted during

manufacturing or distribution. These enable attacks against net-

work infrastructure even when vulnerable administrative services

are not exposed. Once in the network, such attackers can eaves-

drop on private communications, steal private data and intellectual

property, and launch additional attacks against other hosts.

We consider a scenario in which an enterprise network (LAN or

WAN) is targeted by an APT-type adversary who has compromised

one or more pieces of the network infrastructure (e.g., routers or

switches). From this position, the adversary can monitor and ma-

nipulate traffic flowing though their compromised switches. Our

main objective is to hide both the identities of communicating par-

ties and the contents of the communications. This provides unlink-

ability (in the terminology of Pfitzmann and Hansen [42]) of com-

munications from the perspective of these switches. Since switches

can always observe the ingress and egress ports used by a packet,

this unlinkability is limited to the anonymity set defined by that

port: the set of all possible origins and destinations given the sub-

nets defined by those switch ports. In the case of compromised edge

switches the anonymity set cardinality may be one (that is, only

a single end-host is reachable from a particular ingress or egress

port). In this case PHEAR provides little benefit. The impact of

network topology on security is considered in depth in §4.2.

PHEAR’s threat model is similar to that of Tor [15]: the adver-

sary may monitor some fraction of network traffic, and can modify,

replay, reroute, drop, delay, or inject packets in-flight. Additionally,

the adversary can also observe the routing tables in compromised

switches. We do not claim protection against a global adversary,

who may view all network traffic, or to end-to-end traffic confirma-

tion attacks [34,46]. Similar to existing low-latency anonymity net-

works, PHEAR is vulnerable to traffic analysis attacks that leverage

side channels including packet size and timing (e.g., website fin-

gerprinting [48] and protocol identification [52]); although in §4.2

we discuss certain parameters and configurations of the system that

may decrease the accuracy of such traffic analysis attacks.

The PHEAR threat model differs from other anonymity networks

in one significant respect: since the users of the network belong

to the same organization that operates it, the network provider is

trusted in our model but individual infrastructure components are

not. Since the system relies on SDN, we trust the network con-

troller but we do not trust the individual switches.

3.2 Design



Overview. Unlinkability of a message to its source or destination

is a crucial privacy requirement when considering adversaries who

can observe or manipulate traffic. Tor provides this property on an

Internet scale via an overlay onion routing network. On the en-

terprise scale, however, the situation is somewhat different. Large

numbers of end-hosts cannot be leveraged as effectively, and rout-

ing hardware lacks the ability to perform any of the cryptographic

operations necessary for onion-based schemes. PHEAR is an at-

tempt to address this gap and provide unlinkability in enterprise

networks through a combination of packet header rewriting and

Software-Defined Networking.

Unlinkability is provided by normalizing all layer 2 and 3 header

fields except source and destination IP addresses. Higher-layer

headers can already be encrypted through IPsec [32], which we

deploy alongside PHEAR to provide full coverage of the packet

header. Rather than using IP addresses (which trivially leak iden-

tity) to route traffic, PHEAR utilizes OpenFlow-based SDN to route

using temporary 64-bit nonces, which are stored in the IP address

fields of a packet header and are generated independently of the

packet source or destination. These nonces last for a configurable

duration, and allow an ongoing connection to be routed between

endpoints without leaking (to the network switches) any endpoint

identifiers.

The architecture, which consists of three primary components, is

shown in Figure 2. On a high level, end-host proxies mediate access

to the network, rewrite packet headers (to normalize identifying

fields and insert temporary routing nonces), and request and expire

pseudorandom identifiers. The PHEAR server manages the current

pool of routing nonces, generating and removing them as required.

Finally, the SDN controller maintains a mapping between routing

nonces and end-host locations, which it uses to generate on-demand

flow rules for the (untrusted) switches. These roles are elaborated

below.

Performance Goals. Minimizing impact on a user’s perceived la-

tency and throughput is a critical factor in encouraging adoption

of PHEAR. Our base system imposes a latency cost whenever an

endhost requests a new routing nonce for a session. This occurs at

least once, at initiation of a new connection, and may occur more

frequently depending on each end-host’s configuration. While a

nonce is in use, no additional delay is added to an ongoing ses-

sion. Throughput is impacted primarily by PHEAR endpoint prox-

ies, which perform per-packet header rewriting. We experimentally

assess the performance impact of our system on typical traffic (e.g.,

interactive, web, and bulk downloads) in §4.1.

Security Goals. Our primary security goal is unlinkability of a

message to either its origin or destination beyond the set of possi-

ble origins (destinations) indicated by the packet’s ingress (egress)

port. Note that in cases where a malicious edge switch observes

a packet, one or both of these set sizes may be a single end-host.

Thus, certain network topologies (e.g., a single-switch star) may

have little to gain from deploying PHEAR. In addition, we do not

provide unlinkability at the flow level: two packets belonging to the

same ongoing connection will (usually) have the same header and

be linkable to one another. System configurations in which nonces

are frequently refreshed weakens flow-level linkability, and may in-

hibit traffic analysis at the cost of increased latency. We investigate

the security of both configurations in §4.2.

Non-Goals. In addition to the security and performance goals above,

there are several non-goals which we explicitly do not address, ei-

ther because their perceived benefit does not justify the cost, or

because they are open problems outside the scope of this work.

Concealing PHEAR: Due to the sweeping changes made by PH-

EAR to network packet headers, as well as the wide variety of

IP addresses in use (including those which would not normally be

routable, or reserved for special usage), it will likely be apparent

to an attacker that PHEAR is in use. An attempt could be made to

mitigate this by, e.g., limiting the possible space of nonce values,

refreshing nonces only infrequently, and randomizing (rather than

normalizing) header fields. The performance and security tradeoffs

are unlikely to be worthwhile, however, given that it is not clear

what the attacker gains by being aware of PHEAR or that these

measures would be enough to stop PHEAR deployment from be-

ing detected in the first place.

Unobservability: While unlinkability prevents an attacker from link-

ing a message to a specific sender or receiver, observability pre-

vents the attacker from knowing a message has been communi-

cated at all [42]. PHEAR does not (and is not intended to) pro-

vide this property. The authors are unaware of any system which

provides this property without substantial cover traffic overhead,

which would not be suitable for an enterprise network.

Statistical Traffic Analysis: Attackers which use statistical or ma-

chine learning techniques to correlate non-header packet features

(e.g., size, total session traffic volume, inter-arrival time, etc.) in

order to infer protocol in use, fingerprint websites, etc. are outside

the scope of our threat model and an open problem in low-latency

anonymity networks. Arguably, the intent of PHEAR is to force an

adversary to mount this kind of attack by removing the trivial-to-

analyze packet header identifiers.

3.3 Architecture
In this section, we discuss the architecture of PHEAR. Specif-

ically, we describe each system component in detail, the crypto-

graphic requirements we impose on end-to-end encryption schemes

deployed alongside PHEAR, and the protocols used to establish

and maintain unlinkability.

3.3.1 System Components

PHEAR has three primary components: a proxy which performs

packet header rewriting and resides on end-hosts, a server which

manages anonymous routing nonces, and a controller which imple-

ments packet-handling rules on SDN switches.
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PHEAR Proxy. The PHEAR proxy runs on all participating end-

hosts, and is responsible for transparently rewriting incoming and

outgoing packets in order to remove (or replace) explicit or implicit

identifiers. Figure 3 presents a PHEAR packet header, which is

representative of all protected packets on the network. The two

bolded IP address fields in the figure are used by PHEAR to store

a 64-bit nonce, which is treated as a temporary routing token by

the SDN switches. Italics in the figure denote fields which are set

to constant, normalized values in order to remove any identifiers

that can be used in fingerprinting of operating systems, protocols,

etc.. Error-detection fields (total length, checksums) are updated to

correct values but not otherwise modified.

When a packet is received from the operating system (i.e., is

outgoing), the proxy first checks if its header has a locally cached

nonce associated with it. If not, it queries the server over a secure

channel (see 3.3.3), sending the original header and receiving a PH-

EAR nonce in response. Once a cached copy is present, the proxy

replaces the original headers of all packets on the flow with the ob-

fuscated variant before sending it to the network. When a packet is

received from the network, the proxy replaces the PHEAR header

with the actual packet header, which is either cached locally or (if

the flow has not been seen before) retrieved from the server.

The PHEAR proxy is also tasked with refreshing local nonces.

The rate at which nonces are refreshed is referred to as the nonce

refresh rate, and is typically on the order of several seconds (e.g.,

30 or 60 seconds). Existing network connections can get a fresh

nonce assigned by requesting a new value from the server. This

expires the old nonce and re-maps the ongoing network route to

the new value. Each proxy can choose its own nonce-refresh rate,

which represents a tradeoff between latency and security. Long-

lived nonces impose minimal performance impact, but short-lived

nonces may hinder traffic analysis by weakening likability of pack-

ets to ongoing connections. This tradeoff, as well as the possible

consequences of uniquely identifiable nonce refresh rates, is ex-

plored in §4.2.

Finally, the proxy maintains a last-seen time for each locally

cached nonce. If no traffic associated with that nonce arrives be-

fore a tunable threshold is crossed, the flow is considered inactive

and can be terminated. The proxy notifies the server, and both drop

the mapping from their databases.

PHEAR Server. The server component of PHEAR is a control-

plane process that manages the global mapping of actual packet

headers to PHEAR nonces. The server ensures that this mapping is

one-to-one with respect to the current pool of active connections:

each unique packet header is associated with exactly one 64-bit

routing nonce. Nonces are generated using a collision-resistant

hash function (e.g., SHA-1) with an input of the actual source and

destination IP addresses concatenated with a salt value whose size

accounts for the remaining bits of the function’s output range (e.g.,

a 96-bit salt for a 160-bit SHA-1 value). The nonce may change

if it is refreshed by a proxy, but will never map to greater or fewer

than one packet header. When proxies expire a nonce without re-

questing a new value, the server treats it as connection termination

and removes the mapping from the database.

In any case in which a nonce mapping changes or is removed, the

server first confirms that the nonce is associated with the requesting

proxy. IPsec channels are bound to an identifying certificate. If

that identity is also associated with the originating endpoint of the

routing nonce, the transaction is allowed. Additionally, whenever

a nonce is removed from use, the server informs the OpenFlow

controller of the expiration so that flow rules associated with that

value can be expired.

Due to the sensitive nature of communication between the server

and proxies, all messages are sent over a cryptographically secure

channel to prevent network eavesdroppers from trivially deobfus-

cating packet headers. While existing protocols (e.g., IPsec) can

(and are) used for this purpose, establishing an authenticated chan-

nel without leaking identifying information (by e.g., sending certifi-

cates over the wire) to an eavesdropper requires care. We discuss

the requirements on authentication below, and the security implica-

tions in §4.2.

OpenFlow Controller. PHEAR relies on Software-Defined Net-

working (SDN) to route over nonces instead of IP addresses, and

is implemented using the OpenFlow [37] SDN standard due to

OpenFlow’s widespread support by network equipment vendors.

The controller is responsible for managing global routing state by

adding and removing flow rules from each switch’s flow table. The

network topology is stored here, with individual end-host identities

(represented by certificates rather than IP addresses) bound to edge

switch ports.

When the controller receives an unhandled PHEAR packet from

a switch, it queries the server database with that packet’s nonce in

order to identify the intended endpoints. It then computes the next

hop for that packet and emits a flow rule for handling that nonce in

the future. The rule defines a pattern match over the 64-bit nonce

identifier, with a trigger action forwarding packets to the correct

egress port. This approach ensures routing correctness, while si-

multaneously concealing the endpoint of a communication from

intermediate switches by routing only over temporary nonces.

The controller also receives nonce expiration messages from the

server. Since the controller does not maintain a local copy of each

flow table, it is not aware a priori which switches have flow rules

associated with the expired nonce. Rather than querying each switch

and imposing overhead on expiration, the controller simply broad-

casts flow rule removal updates to all switches. If the rule is not

present, the switch ignores the update. Note that this informs an

adversary whenever a nonce is no longer in use. We consider the

security implications of this in §4.2.

3.3.2 Cryptographic Requirements

In order to ensure nonce uniqueness and maintain correct rout-

ing state, unprotected packet headers must be exchanged between

PHEAR proxies and the server. These messages are routed over

untrusted switches, and so must be cryptographically secured in

order to ensure that an eavesdropper cannot map nonce values to

unprotected packet headers.

Restricting identifiers from being transmitted over the network

imposes requirements on any cryptographic protocols used to cre-

ate secure channels. Namely, no scheme can be used which im-

plicitly or explicitly transmits plaintext linkable to a particular host

or set of hosts. Examples of such leaks include digital certificates

and PKI-based digital signatures. In the former case identity is triv-

ially leaked to an eavesdropper. In the latter, an attacker can simply

iterate over the public keys used in the network. The key which

verifies the message is authentic could then be used to identify the

message originator. This disqualifies, for example, TLS [14] as a

drop-in solution for providing secure channels.

Fortunately, IPsec in Transport Mode [45], with Security Asso-

ciations set up using Internet Key Exchange (IKEv2) [30], does

suffice as a drop-in solution for secure channel setup. IKEv2 is

a two-phase protocol, and uses an initial Diffie-Hellman exchange

to set up a confidential channel over which certificates can be ex-

changed securely. Once identity is verified with public-key opera-

tions, shared symmetric keys are derived for future encryption and

authentication. These keys are not linkable to a specific endpoint,
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Figure 4: Client Registration

as they are generated pseudorandomly and contain no identifying

information.

In addition to proxy-server security, IPsec is also highly comple-

mentary to PHEAR’s primary goal. Recall that PHEAR only pro-

tects layers 2 and 3 of the networking stack. Transport-layer and

application data are rich sources of identifying information (e.g.,

TCP ports), and must also be secured in order to ensure unlinka-

bility. IPsec provides this additional coverage: when both PHEAR

and IPsec are deployed all explicit and implicit identifiers originally

present in packet header fields are removed.

3.3.3 PHEAR Protocols

In this section, we discuss the protocols used by PHEAR to pro-

vide unlinkability and maintain routing correctness.

Proxy Registration. When a new host is added to a PHEAR net-

work, its proxy must establish a secure channel with the server in

the presence of possible adversaries. IKEv2 cannot be deployed

immediately, as the host’s network location is not yet known to the

controller and it has no distinct identifier with which to originate

traffic. The registration protocol in Figure 4 addresses this issue,

making use of the certificates already present due to the deploy-

ment of IPsec. The PHEAR server is always reachable from at a

well-known 64-bit identifier S, analogous to a static IP address.

Since this prevents unlinkability of the message destination, how-

ever, S is used only once during the registration protocol.

The newly joined proxy sends a message containing its certifi-

cate (CTC ), the port it is attached on, and a nonce N1 used to ver-

ify that the message was read by the server. The message is signed

by the proxy’s private key and encrypted with the server’s public

key. Note the order of operations: if we instead chose to encrypt

then sign, an eavesdropper could determine the message sender by

iterating over the public verification keys.

On receipt of a registration message, the server adds a mapping

in its database from a fresh nonce N2 to communications originat-

ing at the server and terminating at the network port bound to the

proxy’s certificate. It also adds a nonce N3 to the database for mes-

sages going from the proxy port to the server, which removes the

need to route on S and leak information. The server responds with

verification nonce N1 as well as routing nonce N3. Note that N3

also provides replay protection: an attacker replaying the proxy’s

initial message will not know the nonce to use for future commu-

nications. N2 and N3 can then be used for each direction of the

IKEv2 handshake. Once keys have been derived, IPsec in transport

mode is deployed for the duration of network operation.

Nonce Lookup. Nonces in PHEAR are used to route traffic be-

tween two endpoints without revealing the identity of those end-

points to intermediary switches. This capability leverages Open-

Flow’s ability to dynamically update switch flow tables in response

to the receipt of a packet for which no existing rule exists. Figure

5 illustrates the protocol used whenever this occurs. The switch

OpenFlow Switch Controller PHEAR Server

pkt_in(pkt,swid)

get_loc(src,dst)

(Switch,Port)

flw_mod(Nonce,Out)

Figure 5: Nonce Lookup

Source
(PHEAR Proxy) PHEAR Server

Destination
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〈(Nonce,Header)〉

Figure 6: PHEAR Session Initiation

receiving an unknown packet forwards it, as well as the switch’s

identifier, to the controller. There, the 64-bit nonce is extracted

from the source and destination IP address fields. This value is

used to query the PHEAR server, which responds with the network

location (i.e., switch and port) associated with the destination end-

point for that nonce. The controller computes the necessary egress

port given the destination, and emits a flow rule to the switch map-

ping the nonce to that port. The flow rule persists until it is removed

by the controller due to nonce expiration.

Note that the above protocol operates on a per-switch basis, rather

than per-route. This allows the controller to maintain a static, ternary

table mapping destination identity and switch identifier to an egress

port and have a minimal computational burden associated with each

lookup. In turn, the latency imposed by forwarding the packet to

the controller and waiting for a response is proportional to the num-

ber of switches along a path. The time/space tradeoff could be re-

versed by storing the topology as a graph, computing the shortest

path on a per-nonce basis, and installing the entire route at once.

This would make each lookup take at least linear time; however, it

potentially opens the controller to denial-of-services attacks from

forged nonces.

PHEAR Session Initiation. Figure 6 shows the protocol for set-

ting up a new PHEAR session. Angle brackets in the figure denote

messages sent over the secure (i.e., confidential and authenticated)

channel set up during proxy registration.

First, the originating end-host sends the actual packet header to

the PHEAR server over a secure channel and requests a new rout-

ing nonce. The server generates a 64-bit pseudorandom value and

stores the mapping between the nonce and header, then returns the

nonce value to the message sender. The sender caches this value

for the duration of the session. Once the session terminates (i.e.,

the activity timer expires), the proxy will notify the server and can

delete the nonce from its cache.

Once the routing nonce is cached at the originator’s PHEAR

proxy, it can begin sending identifier-free packets (whose headers

contain only constant values and the 64-bit nonce) to the receiver.

This process informs any switch along the packet’s path what ori-



gin and destination subnets (as defined by ingress and egress port)

the actual origin and destination hosts are part of, but provides no

other explicit or implicit identifiers in the packet header which can

be used to constrain these anonymity sets.

When the receiver gets the first packet in a new PHEAR session,

it requests the actual header from the PHEAR server over a secure

channel and caches it locally. Before responding, the server con-

firms that the receiver’s identity matches the destination IP address

in the actual packet header. As the channel being used for this ex-

change is authenticated, this reduces to confirming that the channel

is associated with the certificate owning that IP address.

The adversary’s view of this protocol is limited to messages seen

by the network switches. In the case of exchanges with the PH-

EAR server (which contain original packet headers and mappings

to nonces), these messages are encrypted and authenticated. In the

case of exchanges between endpoints, message payloads and the

transport layer are encrypted with IPsec. The network and datalink

layers are stripped of identifiers by PHEAR. This forces an eaves-

dropper to rely on traffic analysis of side channels (e.g., packet tim-

ing, size, and volume) rather than direct observation. PHEAR does

not provide any security guarantees with respect to traffic analysis,

but we believe that a high nonce refresh rate may impede corre-

lation of packets to specific ongoing sessions (especially in high-

bandwidth settings).

3.4 Implementation
Our prototype is implemented and tested in an emulated Open-

Flow SDN environment. This enabled rapid, automated scaling and

reconfiguration of network topology. The SDN controller is imple-

mented in Flowlog [39], a tierless declarative language for build-

ing verifiable OpenFlow controllers. We chose Flowlog in order

to minimize the attack surface of the SDN controller: if switches

can be malicious, they may attempt to subvert the controller over

their dedicated link. Flowlog controllers compile to both an ex-

ecutable and a specification in Alloy [26] which enables formal

verification of controller behaviors. Flowlog also supports North-

bound APIs via event-based and remote table abstractions, which

utilize Apache Thrift RPC to define remote interfaces. We utilize

these to enable communications with the PHEAR server.

The server is written in Python and uses Apache Thrift to define

remote interfaces with both the OpenFlow controller and PHEAR

proxyies. SQLAlchemy is used to interact with a back-end SQLite

nonce database. In our prototype, the server is co-located with the

controller, but it could easily be moved to any routable system.

Finally, the PHEAR proxy is written in C in order to use the Net-

filter Queue library with iptables to incercept packets queued in

the Linux kernel and manipulate them in user-space. This enabled

rapid development and prototyping of the proxy without having to

write Linux kernel modules.2

4. EVALUATION
In this section, we quantify the performance and security of PH-

EAR through experimentation with our prototype implementation

in a realistic network emulation testbed.

4.1 Performance Evaluation
Experiment Setup. We deploy our system on an enterprise-like

network in Mininet shown in Figure 7.3 We conduct whole-network

2
Alternatively, the proxy could be implemented fully in kernel space to avoid the

performance impact of kernel/user context switching. However, this comes with addi-

tional deployment obstacles, as all users would need to run a custom kernel.
3
Due to the sensitive nature of an organization’s internal network layout, to the best

of our knowledge no data sets are available on real-world enterprise network topolo-

Figure 7: This emulated network topology consists of five

switches (S1–S5), nine end-hosts (H1–H9) and one SDN con-

troller (C). Each full-duplex link is configured with 1 ms latency

and 100 Mbit/s bandwidth.

experiments with two distinct classes of users: interactive web brow-

sers and bulk downloaders. The web browsing users fetch 300 KB

files over HTTP, pausing for 1–10 seconds (uniformly distributed)

between fetches. The bulk downloaders fetch 5 MB files, pausing

for 1-5 seconds (uniformly distributed).4 The PHEAR server and

controller are run on host C and each end-host (denoted Hn) runs a

local instance of the PHEAR client. Hosts H1–H3 serve files over

HTTP, H4 and H7 are bulk downloaders, and the remaining hosts

are web browsing users.

Our experiments compare PHEAR’s performance to that of point-

to-point IPsec (tranport mode) as a baseline. Additionally, we also

measure the performance impact of the nonce refresh rate parame-

ter. We conduct experiments in which nonces are refreshed every

30 s, 60 s, 120 s, and no nonce refresh.

Metrics. We measure performance from the user’s perspective with

two standard metrics from the anonymity network performance lit-

erature [28, 47]. First, we measure time-to-first-byte, which is the

amount of time between a client’s request for a TCP connection

and receipt of the first byte of data from the server. This measure

is particularly relevant to real-time applications such as web brow-

sers and live streaming video, where responsiveness is important.

Second, we measure total download time, which is simply the to-

tal time necessary to receive the last byte of data. This metric is

important for applications where high throughput is valuable (e.g.,

bulk downloads or file sharing).

Results. Our whole-network performance measurements are sum-

marized in Figure 8 as cumulative distribution functions (CDFs) of

the time-to-first-byte and total download time for the emulated web

and bulk clients.

The time-to-first-byte for web and bulk clients, shown in Fig-

ures 8(a) and 8(c), is similar for PHEAR (with no refreshes) and

IPsec. Both protocols require the assistance of the SDN controller

to install flow table forwarding rules at each of the switches along

the path from the sender to the receiver, but this operation only

occurs once for each communicating client/server pair. PHEAR

clients do, however, register each client/server pair with the PH-

EAR server to obtain a nonce, which requires an additional round

trip at both the sender and receiver to obtain and resolve the nonce.

Since the experimental network has only three distinct servers, in

this experiment only three nonces are requested for each client (one

for each client/server pair). Now as the nonce refresh rate increases

gies and configurations. As such, we make reasonable modeling assumptions about

network shape, host placement, number and capacity of switches and links, and other

important configuration details.
4
This traffic generation approach is similar to prior work in emulating users of

anonymity networks [28, 47].
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Figure 8: Whole-network performance results for the emulated web and bulk clients.

from once every 120 seconds to every 30 seconds, we observe the

tail of the distributions increase. These additional delays are the

result of additional nonce requests at the source and destination

hosts, and the additional forwarding table rules to be installed at

each switch along the traffic’s path. Given the relationship between

refresh rate and network delay, we recommend that the refresh rate

be higher than 30 seconds (for this experimental network). But de-

spite these delays, we believe that the absolute performance cost is

modest in terms of impact on the user’s quality-of-service.

Figures 8(b) and 8(d) show the distribution of total download

times for the web and bulk clients, respectively. Relative to IPsec,

web clients that use PHEAR (with no refreshes) experience very

similar performance. However, the bulk clients’ download times do

incur a modest penalty. This penalty is due to the user-space packet

interception and dynamic header rewriting by the PHEAR clients,

which operate at the sender and receiver. In addition, we note that

the relatively high time-to-first-byte is a significant component of

the total download times as the nonce refresh rate decreases. As

such, we note that the nonce refresh rate is an important parameter

for total download time as well as time-to-first-byte. But the per-

formance cost is still reasonable for most users: for example, 90%

of the PHEAR web requests with a fast 30-second nonce refresh

rate complete in less than three seconds; 85% of the bulk requests

with the same refresh rate complete in less than four seconds.

Overall, these results demonstrate that, under a realistic work-

load of web and bulk file sharing traffic, the PHEAR prototype

offers sufficient performance to support expected user traffic. Fur-

thermore, PHEAR offers similar performance to IPsec alone when

the nonce refresh rate is sufficiently high.

4.2 Security Evaluation
In this section we summarize several classes of attack that an ad-

versary might mount on PHEAR, and how our system is impacted.

4.2.1 Traffic Analysis Attacks

PHEAR does not provide any strong guarantees about adver-

sarial traffic analysis. Indeed, by stripping identifiers from packet

headers, the goal of PHEAR is arguably to force an adversary into

using such attacks rather than being able to trivially link endpoints

to messages.

Session Linkability. A necessary pre-condition for (to the best

of our knowledge) all current traffic analysis techniques is cor-

relating observed packets to ongoing sessions. When identifiers

like IP addresses are available this is trivial. However, PHEAR

routing nonces complicate the task, especially when refreshed at a

high rate and aggregated with other ongoing sessions from both the

same end-host and others sharing that switch port. To link multi-

ple nonces to the same session requires an initial statistical analysis

step, prior to actually drawing conclusions about the traffic itself.

Statistical Fingerprinting. Analysis of identifying characteristics

not present in the header, such as inter-arrival times, packet size,

and volume is outside the scope of our threat model. In quiescent

network, an attacker able to observe traffic to and from the PHEAR

server (e.g., by compromising its edge switch) may be able to link

nonce requests with new traffic. The nonce values are not them-

selves visible in the exchange, but are correlated in time to new

nonce installations on switches.

End-to-End Correlation and Watermarking. Unlike onion rout-

ing, PHEAR packet identifiers do not change each hop. Thus, there

is little need to watermark or correlate end-to-end traffic: packets

are linkable to an ongoing connection simply by sharing the same

routing nonce. These attacks may be more useful in settings where

the nonce refresh rate is high and session linkability is nontrivial.

Transport Layer Analysis. PHEAR does not strip identifiers from

the transport layer, as it is designed to be deployed alongside a

protocol granting transport-layer confidentiality and authentication,

such as IPSec in transport mode. These protocols are not designed

for anonymity of end-points, however, and may leak identifying

information. Internet Key Exchange (IKE) handshake implementa-

tions and parameters can be used to fingerprint operating systems,

for example [25]. IKE is frequently used with IPSec to establish

shared keying material, and thus may leak identifiers via plaintext

handshake payloads even when packet header fields are secured

with PHEAR. Furthermore, IPSec uses monotonically increasing

sequence numbers, which might be used by an attacker to corre-

late a newly refreshed nonce with its prior value. PHEAR could be

extended into the transport layer to mitigate such header-specific

leaks, but in doing so would bind itself to a specific transport layer

security protocol.

4.2.2 Linkability Attacks

Attacks in this section are fundamentally concerned with reduc-

ing or eliminating unlinkability of message origin and destination

without resorting to statistical traffic analysis.

Targeted Switch Compromise. An adversary interested in linking

specific hosts can do so by compromising the edge switches used

by those hosts. While PHEAR still guarantees that linkability is

limited to ingress/egress port anonymity sets, at least one of these



sets has only a single member on edge switches. The size of the re-

maining set is topology-dependent (or one if both hosts are on the

same switch). Hierarchical networks enforce a tradeoff between

anonymity set size and coverage of network traffic, for example.

Conversely, single-switch star topologies gain no benefit from de-

ploying PHEAR.

Multiple Switch Compromise. If more than one switch in a net-

work is malicious, then the anonymity sets provided by PHEAR

will be the smallest sets seen by any switch on a route. That is, the

origin set will be the set observed at the ingress port of the switch

closest to the sender, and the destination set will be the set observed

at the egress port of the switch closest to the receiver.

Server Compromise. The nonce server is a trusted system compo-

nent which maintains identity mappings for all current nonce val-

ues. If it is compromised, communicating end-hosts become link-

able to one another. Unless expired mappings are stored by the

network operator for diagnostic reasons, an adversary compromis-

ing this server would not be able to link the endpoints of previous

communications.

Controller Compromise. If the SDN controller is compromised,

it can both pull the existing identity mappings from the server, as

well as form a global view of the network by querying switches

for their flow rules. In both cases linkability is broken. One differ-

ence from the server, however, is that the controller can be made

verifiably secure against certain classes of vulnerability by using

SDN programming languages such as Flowlog [39] which output

both executable code and formal models of that code. While this

does not guarantee the absence of all vulnerabilities, it reduces the

available attack surface by eliminating classes of exploitable bugs.

End-Host Compromise. An attacker operating a compromised

end host trivially learns the identities of machines connecting to

it. While PHEAR could be configured to not reveal the origin of

connections (e.g., by not restoring the source IP field of the packet

header), doing so will likely break any ongoing application-layer

sessions (e.g., streaming media) if the sender refreshes nonce val-

ues and the sender IP changes. We elected to minimize our impact

on user experience, rather than provide origin anonymity to the des-

tination.

Control Plane Man-in-the-Middle (MiTM). Traffic from clients

to the server can be linked to the server during client registration,

due to the static identifier used by the server for bootstrapping new

clients. After this point, communication is routed over standard

PHEAR nonces. Also during client registration, an adversary may

attempt to MiTM the identity verification handshake prior to IKEv2

being deployed. As messages in both directions are signed and en-

crypted, the adversary is limited to replay attacks rather than cor-

rupting or forging messages. If the message originating from a

client is replayed, however, the attacker will be unable to read the

routing nonce to use for future communications. If the message

originating at the server is replayed, the verification nonce will not

match and the client will abort. Once the IKEv2 handshake begins,

we rely on the security of IPsec to prevent attackers from decrypt-

ing, forging or corrupting client-server communications.

Data Plane Man-in-the-Middle. Switches can drop, corrupt, forge,

or redirect traffic. In terms of linkability, normal data plane traffic

is confidential and authenticated (via IPsec) as well as stripped of

identifiers. Authentication must be implemented via message au-

thentication codes (e.g., using IPsec), however. Digital signatures

can leak identifying information by allowing the attacker to iterate

over the public verification keys of all network participants.

Randomness Exhaustion. If the nonce server has access to a

source of randomness which is replenished slower than the total

rate at which new nonces are requested, then future nonce values

may become predictable. Rate-limiting of nonce requests can mit-

igate this issue, but may have a performance impact in large net-

works.

Nonce Expiration Notification. The SDN controller does not main-

tain a local copy of the global routing state, and thus must broadcast

flow rule expirations for specific nonce values to all switches in the

network. This notifies adversarial switches as well. The broadcast

does not directly impact linkability, as the set of current nonce val-

ues is not itself sensitive. However, it may make it easier for an

adversary to distinguish is a particular nonce is associated with a

single long-duration connection of multiple short connections bro-

ken by nonce expiration broadcasts. Nonces are drawn pseudoran-

domly from a 64-bit space, however. For a specific nonce value to

recur frequently, a substantial amount of network traffic would be

required.

Nonce Refresh Rate Analysis. PHEAR nonces are refreshed at a

client-determined rate in order to allow each end-host to tailor the

protocol for its own workloads. However, the rate at which nonces

are refreshed is itself a temporal identifier, and could be used to be

used to fingerprint end-hosts. To mitigate this end-hosts can be con-

figured to use a universal refresh rate, or can introduce noise into

their individual refresh rates in order to obscure the timing signal.

The former choice eliminates the identifier entirely, but may nega-

tively impact performance (if the refresh rate is high) or security (if

it is low).

4.2.3 Availability Attacks

This section considers attacks on resource availability, in order

to disrupt or deny legitimate users. Note that stopping such attacks

is not a primary goal of PHEAR, and successfully mounting one

does not compromise unlinkability.

Nonce Exhaustion. If an end-host continually requests new nonces

without ever expiring them, the total pool of available nonces will

necessarily be depleted. This behavior is easily distinguishable

from normal usage patterns, however. In such cases the server

could expire the nonces on its own.

Cryptographic Denial of Service. The client registration protocol

uses public key cryptography in its identity verification handshake.

An attacker could exploit this by continually replaying captured

client messages or forging its own, forcing the server to decrypt

and verify the message before discarding it.

Spurious Nonce Denial of Service. If spoofed messages contain-

ing spurious nonce values are rapidly sent to the network, the con-

troller could be overwhelmed with (bogus) nonce lookup requests.

In this case, new, legitimate lookup requests would be dropped.

Existing flow rules would remain, however, so ongoing sessions

are unlikely to be disrupted.

Packet Dropping. Malicious switches can trivially choose to drop

or redirect packets passing through them. PHEAR does not miti-

gate this, but also does not amplify the effect.

5. DISCUSSION
In this section, we discuss many open questions related to the

design and operation of PHEAR.

5.1 Traffic Analysis Resistance
Typically leveraging features that are preserved in encrypted net-

work traffic such as packet size or inter-arrival time, modern traf-

fic analysis attacks often employ statistical or machine learning

techniques to infer sensitive information about the contents of en-

crypted network traffic. Examples of such attacks include website

fingerprinting [29, 48, 49], web browser fingerprinting [53], identi-



fication of spoken phrases in encrypted VoIP conversations [50,51],

and inference of the application protocol [52].

While the primary goal of PHEAR is not to defeat these types

of sophisticated attacks, we believe that the use of multiple nonces

for each underlying flow may reduce the accuracy of these statis-

tical attacks. Furthermore, our design is compatible with exist-

ing traffic analysis defenses such as format-transforming encryp-

tion (FTE) [17, 35]. As future work, we plan to investigate using

libFTE [3] with our design and also empirically evaluate how the

use of multiple simultaneous nonces with individual flows may af-

fect the accuracy of traffic analysis tasks.

5.2 Trust in a Centralized Controller
As a consequence of building PHEAR on top of an SDN, we are

bound to the requirement for an SDN controller. The controller,

which is usually centralized, is a single point of failure and could

be a valuable target for attack. Decentralized SDN controllers have

been proposed to load balance the control traffic and improve net-

work performance [16]. However, current designs still require that

the controller(s) be trusted. Private information retrieval (PIR) may

be a promising approach for hiding the SDN queries from the con-

troller(s), thereby reducing the degree of trust in the controller(s),

as the performance of information-theoretic PIR schemes is likely

sufficient to support online SDN controller queries [13].

5.3 Importance of Network Topology
The security of PHEAR is dependent largely on an adversary’s

ability to compromise key network switches at the edges of the net-

work. This position enables the attacker to directly observe the end-

hosts directly connect to the compromised switch. Consequently,

our design would be most promising for networks with a large

number of switches connected to clients, and also a large number

of “core” switches that connect switches or routers together. Few

LAN/WAN-level network topology data sets are publicly available;

however, a portion of the Stanford University campus network is

described in [31]: this topology consists of ten switches connected

to end-hosts and sixteen core routers/switches that connect the edge

switches. Such a complex, hierarchical network would be suitable

for a PHEAR deployment.

5.4 Road to Deployment
An important practical consideration for any new system is the

system’s path to real-world deployment. PHEAR leverages the ex-

isting network infrastructure (assuming that an SDN infrastructure

is already in place) and requires no additional hardware compo-

nents beyond the standard SDN switches and controller. The end-

hosts, however, must run the PHEAR client component in order to

use the system.5 We note that any end-host may opt-in to using PH-

EAR while those hosts that do not wish to adopt are still able to use

the standard MAC and TCP/IP network protocols, as the same net-

work infrastructure can route both PHEAR and non-PHEAR traffic

simultaneously. These hosts, however, will not receive the security

and privacy benefits offered by our system. As such, our design can

be incrementally deployed to any clients who wish to opt-in.6

6. RELATED WORK
Tor [15] is the most popular low-latency anonymity network with

an estimated two million daily users as of December 2014 [6] and

5
This is a similar requirement to Tor users running and configuring a local Tor proxy,

but the PHEAR client requires super-user privileges to intercept/rewrite packets.
6
To ease the deployment of the PHEAR clients, we note that the client component

could be run at a network gateway or WiFi router, similar to the Torouter [7] or anon-

abox [2].

thousands of volunteer-operated Tor routers. Other low-latency

anonymity network designs have been proposed [12,20,43,44], but

have not been widely adopted. Tor uses a decentralized client/server

architecture with layered encryption based on onion routing and is

the de facto standard for anonymizing traffic on the Internet. How-

ever, Tor is not suitable for protecting traffic that does not leave its

origin network and does not transit the public Internet. As such,

it is not appropriate for anonymizing traffic within an enterprise or

campus network. PHEAR is designed to ensure privacy for pre-

cisely this class of traffic.

The IPsec protocol family can ensure the confidentiality, authen-

ticity, and integrity of IP packets [32]. IPsec offers two modes of

operation: transport and tunneling mode. In transport mode, the

IP payload is encrypted and authenticated point-to-point, but the

IP header (which reveals identifying addresses) is still sent in the

clear. In tunneling mode, an entire IP packet is encapsulated within

an Encapsulating Security Payload. IPsec in tunneling mode is of-

ten used to create a virtual private network (VPN), but it requires

a dedicated gateway host that may be subject to monitoring by a

dedicated adversary. PHEAR leverages IPsec in transport mode

to ensure confidentiality of IP payloads (e.g., the transport header

and above) while using SDN controller logic to dynamically route

IP packets with obfuscated addresses. Incidentally, IPsec has also

been proposed as a replacement for TLS in Tor [11].

MACsec provides a connectionless medium access control pro-

tocol with confidentiality, integrity, and authentication for Ether-

net frames [1]. Standardized as IEEE 802.1AE, MACsec protects

the payload of the MAC frame, but it does not hide the MAC ad-

dresses that identify the physical network interface. In contrast,

PHEAR guarantees that all identifiers present in the MAC header

(and higher protocol headers) are removed.

SDN has been proposed as a tool to enhance network security.

For example, OpenFlow Random Host Mutation (OF-RHM) has

been proposed to protect networks from scanning attacks [27]. OF-

RHM works by dynamically translating real IP addresses into short-

lived “virtual” IP addresses. Packets with virtual IP addresses are

routed dynamically to the correct host using a custom SDN con-

troller. However, OF-RHM distributes virtual IP addresses through

standard name resolution services (e.g., DNS), so any host can per-

form a name lookup to retrieve a target’s virtual IP address. Conse-

quently, OF-RHM cannot ensure the anonymity properties that are

provided by PHEAR.

7. CONCLUSION
This paper presents the design, implementation, and evaluation

of PHEAR, a system built atop existing Software-Defined Net-

working protocols and standards, that efficiently and transparently

removes implicit and explicit identifiers from network traffic. When

used in concert with existing IP security protocols (IPsec), PHEAR

effectively obfuscates the entire packet from the MAC layer and

above. Experiments conducted in a network emulation environ-

ment show that our system has sufficiently low latency and high

throughput to support common applications including web brows-

ing and file sharing.
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